Giant magnetoresistance in ultrasmall graphene based devices.
نویسندگان
چکیده
By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of carbon. In the ground state a short zigzag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. The application of a magnetic field makes the ribbon ferromagnetic and conductive, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 T or at liquid helium temperature and 300 G.
منابع مشابه
Comparative Studies on Giant Magnetoresistance in Carbon Nanotubes and Graphene Nanoribbons with Ferromagnetic Contacts
This contribution reports on comparative studies on giant magnetoresistance (GMR) in carbon nanotubes (CNTs) and graphene nanoribbons of similar aspect ratios (i.e perimeter/length and width/length ratios, for the former and the latter, respectively). The problem is solved at zero temperature in the ballistic transport regime, by means of the Green’s functions technique within the tight-binding...
متن کاملAtomistic switch of giant magnetoresistance and spin thermopower in graphene-like nanoribbons
We demonstrate that the giant magnetoresistance can be switched off (on) in even- (odd-) width zigzag graphene-like nanoribbons by an atomistic gate potential or edge disorder inside the domain wall in the antiparallel (ap) magnetic configuration. A strong magneto-thermopower effect is also predicted that the spin thermopower can be greatly enhanced in the ap configuration while the charge ther...
متن کاملTheoretical Studies of Spin-dependent Electronic Transport in Ferromagnetically Contacted Graphene Flakes
Based on a tight-binding model and a recursive Green's function technique, spin-depentent ballistic transport through tinny graphene sheets (flakes) is studied. The main interest is focussed on: electrical conductivity, giant magnetoresistance (GMR) and shot noise. It is shown that when graphene flakes are sandwiched between two ferromagnetic electrodes, the resulting GMR coefficient may be qui...
متن کاملSpin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction
Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite direction...
متن کاملCurrent-Perpendicular-to-Plane Magnetoresistance in Chemical Vapor Deposition-Grown Multilayer Graphene
Current-perpendicular-to-plane (CPP) magnetoresistance (MR) effects are often exploited in various state-of-the-art magnetic field sensing and data storage technologies. Most of the CPP-MR devices are artificial layered structures of ferromagnets and non-magnets, and in these devices, MR manifests, due to spin-dependent carrier transmission through the constituent layers. In this work, we explo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 13 شماره
صفحات -
تاریخ انتشار 2009